/***

** Program Filename: A9.cpp

el Author: Jessica Schuler

* K Date: 3-12-14

el Description: In this game a user needs to navigate through a maze

el Input: User inputs the direction they would like to go. They can also
il get a list of all the locations they have been.

*x Output: Once the user reaches the end of the maze they are informed

il they finished and a list of their path is output.

***/

#include<iostream>
#include<vector>
#include<algorithm>
#include<iterator>
#include<limits>

using namespace std;

class node //class node to hold maze locations

{

public:
node (); //default constructor
~node (); //destructor
node (char newID); //modifier

char get ID(); //function to return ID
//function to set node directions
void set node(node *n, node *s, node *e, node *w);
//these all return direction name
node* getNorth () ;
node* getSouth() ;
node* getEast ()
node* getWest (),
private:
char ID; //variable for node ID names
node *North, *South, *East, *West; //variable directions

}i

node :: node() : ID(' '), North(NULL), South(NULL), East (NULL), West (NULL)

{
//left blank

node :: node (char newlID)
ID(newID), North (NULL), South(NULL), East (NULL), West (NULL)

//left blank

node :: ~node ()

{
//left blank

}

/*~k~k**~k~k**~k~k***~k***~k*~k~k***~k***

* Function: char get ID

x*x Description: returns ID of the node
*x Parameters:

*x Pre-Conditions:

*x Post-Conditions:

***/

char node

{

get ID()

return ID;

/***

* *

* %

* *

* *

* *

Function: void set node

Description:

Parameters:
Pre-Conditions:

Post-Conditions:
***/

void node

{

node*

North =

South
West
East

node

retur

node

retur

node

retur

node

retur

int main ()

{

set node(node *n, node *s,

n;
Sy

= W,

n

n

n

n

ey

getNorth ()

North;

getSouth ()

South;

getEast ()

East;

getWest ()

West;

assigns direction to each node location

node *e, node *w)

//these set up all the nodes of the maze

node
node
node
node
node
node
node
node
node
node
node
node

*A:

*B
*C
*D
*E
*F
*G
*H
*I
*J
*K
*L

xR gHITDTOQEEHOOQm

’

new node (
= new node (
= new node (
new node (
new node (
new node (
new node ('
(
(
(
(
(

’
\l

’

’

\l

4

’

)
)
)
)
)
)
) ;
)
)
)
)
)

’

new node
new node
new node
new node
= new node

\l

4

’

\l

’

4

//these set up the node directions/locations
A->set node (NULL, E, B, NULL);
B->set node (NULL, F, NULL, A);

C->set node (NULL, G, D, NULL);
D->set node (NULL, NULL, NULL, C);
E->set node(A, I, NULL, NULL);

F->set node (B, NULL, G, NULL);

G->set node(C, K, H, F);
H->set node (NULL, L, NULL, G);

I->set node(E, NULL, J, NULL);
J->set node (NULL, NULL, NULL, I);
K->set node (G, NULL, NULL, NULL);

L->set node(H, NULL, NULL, NULL);

node* current = A;

std: :vector<char> Cl; //vector to hold users locations
std: :vector<char> C2; //2nd vector to hold user locations
Cl.push back('A'); //sets start point in vector

C2.push back('A');

int map;

while (current != L) //keeps going until end of maze is reached
{
cout << "You are in room " << current->get ID() <<
" of a maze of twisty passages, all alike! " << endl;
cout << "You can go: ";

if (current->getNorth () != NULL) cout << " North. ";
if (current->getSouth () != NULL) cout << "South. ";
if (current->getEast () != NULL) cout << "East. ";

if (current->getWest () != NULL) cout << "West.";

cout << endl;
cout << endl;

cout<<"Do you want a list of rooms you have entered"<<endl;
cout<<"going back to the start? (Enter 1 for Yes or 2 for No)";
cin >> map; //gets user input if they want a list
while(cin.fail()) //checks for numeric entry
{

cin.clear () ;

cin.ignore (std::numeric limits<std::streamsize>::max (), '\n');

cout<<"Invalid Entry! Please enter a Number 1 or 2:";

cin >> map;

}

if(map == 1) //if the user enters 1 for yes

{

std::reverse(C2.begin(),C2.end());//reverses vector

for(int i = 0; 1 < C2.size(); i++)
cout<<" "<<C2[i]; //outputs vector
cout<<endl;
//reverse vector back so it 1is reset for next time
std::reverse (C2.begin(),C2.end()) ;
}
else
cout<<endl;

cout << "Pick a Direction (N,S,E,W): ";
char direction;
cin >> direction; //asks user to pick direction to go

if((direction == 'N') && (current->getNorth() != NULL))

current = current->getNorth();

if((direction == 'S') && (current->getSouth() != NULL))
current = current->getSouth();

if((direction == 'E') && (current->getEast() != NULL))
current = current->getEast();

if ((direction == 'W') && (current->getWest () != NULL))
current = current->getWest () ;

Cl.push back(current->get ID()); //adds node ID to vector
C2.push back(current->get ID());
cout << endl;

cout << endl;

cout << "You Finished the Maze!!!" << endl;
cout << "The Path you took is: ";

std::ostream iterator<char>output (cout, " ");
copy(Cl.begin(), Cl.end(), output); //outputs user path

cout << endl;

//now I delete all new items to release memory
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete

Ne Ne Ne N

o e

Ne Ne Ne Ne N

HEXROgHIZDQEMOOQW

~e

o
~.

return

